
DefCamp Cluj-Napoca 
Dev Ally, Zero-Days Foe 



Sponsors…



About me

• 12 years in the field! 

• Application Security Lead @ Canon 
EMEA

• Author and reviewer

• A regular speaker at industry 
conferences e.g. DefCon3x, Security 
Bsides6x, Confidence, LeHack, 
Hacktivity, OWASP global AppSec, IEEE 
AI/ML, NoNameCon, COSAC, c0c0n, 
ISACA Euro CACS/CSX and …

• Lifelong learner!!! 



AppSec

• Software security covers full development lifecycle.

• Application security focuses on post-deployment.

• Software security includes pre-deployment practices.

• Application security involves post-deployment 
activities.



The ecosystem

• SSDLC

• Secure By Design

• SAST/DAST…

• …

• …

SSDLC

Secure By 
Design



Appsec ecosystem 

• Shifting left ! 

DEVELOPMENT OPERATION

Code

Build

Test

Deploy

Operate

Monitor

Security 
Practices/Testing



Appsec ecosystem 

Continuous Improvement

• Vulnerability Management outcomes

• Hardening 

• Annual Pentests 

• Periodic Security Assessments



Appsec ecosystem 

Security testing 

• Automated
• SAST 

• DAST

• IAST

• SCA

• ???

• Manual
• Code Review

• PT

https://mailtrap.io/blog/qa-testing-memes/



Appsec ecosystem 

• Inventory of all libraries, dependencies, etc. => SBOM

• Identify and scan all pf open source components => SCA



Appsec ecosystem 

• Security training and awareness 
• You need it!

https://twitter.com/ItKraftz/status/1623155209114644480



Tooling disadvantages 

• Cost 

• Limited to predefined patterns and signature

• High number of FP

• AI is just a fancy button (fun pic here!)

• Integration difficulties 

https://giphy.com/stickers/meme-monkey-spiderlex-5vaSWRP4iRf8IrMs5l





No!

SAST/DAST/IAST = Limitations 



SAST limitations 

• Unable to Detect Runtime and Environmental Vulnerabilities (Obvious )

• Limited Coverage of Modern Attack Vectors (lack of API security check, 
not really updated for new tech stacks and frameworks)

• High False Positive and Negative Rates (FP or Noise and FN or lack of 
detection)

• Scalability and performance issues (large codebases, Incremental 
scanning is still an issue)



DAST limitations 

• Unable to Detect Runtime and Environmental Vulnerabilities (Obvious )

• Limited Coverage of Modern Attack Vectors (lack of API security check, 
not really updated for new tech stacks and frameworks)

• High False Positive and Negative Rates (FP or Noise and FN or lack of 
detection)

• Scalability and performance issues (large codebases, Incremental 
scanning is still an issue)



IAST limitations 

• Dependence on Real Traffic [IAST’s effectiveness often depends on the application encountering 

real or simulated traffic that covers all aspects of its functionality. Inadequate traffic can lead to incomplete 

testing and missed vulnerabilities.]

• Cost Issues [IAST tools can be expensive to implement and maintain. The costs not only include 

licensing fees but also the resources needed to manage and operate the tool within the development 

lifecycle.]

• Performance overhead [Running IAST tools can introduce performance overhead on the 

application being tested, potentially affecting its responsiveness and increasing resource usage, which can 

be problematic for production environments.]



RASP 

• What is rasp 

RASP embeds in applications to instantly 
detect and block threats during runtime by 
understanding the app's logic, effectively 
protecting against vulnerabilities with 
precision. 



RASP benefits 

• Real-Time Protection: Like a vigilant guardian within your app, ready to fend off 
attackers on the spot.

• Flexibility: Adapts like a chameleon, fitting perfectly into various environments 
and requirements without hassle.

• DevSecOps and SSDLC Friendly: Acts as a supportive team player in development 
and security processes, making sure security is baked in from the start.

• Automatic Security Updates: Provides your app with a steady flow of health 
checks and defense enhancements, seamlessly.

• Compliance Friendly: Keeps a detailed log of security measures, simplifying 
regulatory compliance.

• Insightful Reporting: Offers detailed analysis of security incidents, akin to having 
a personal security analyst explaining what went wrong and how.

 



RASP vs SAST/DAST/IAST 

• Protects applications in real-time by working from within.

• Automatically responds to threats without needing application 
modifications.

• Comparative Analysis

• SAST: Pre-deployment, source code analysis. Does not offer real-time 
protection.

• DAST: Post-deployment, external testing. Ident

• SAST/DAST/IAST focus on pre/post-deployment testing, identifying 
vulnerabilities without the capability to respond in real-time.



RASP 

• Is it still proactive or reactive…!?!?!?!??!

https://i.imgflip.com/59f53e.png



RASP approach 

• [RASP (Runtime Application Self-Protection)** is a security 
technology that integrates with an application or its runtime 
environment to control application execution and detect and prevent 
real-time attacks. Its approach to identifying and mitigating security 
issues involves monitoring the application's behavior and context to 
make intelligent decisions about threats in real time.]



RASP Steps 

1. RASP is integrated with the application or its runtime 
environment. 

2. The application's operations and data flows are continuously 
monitored. 

3. All requests and behaviors are analyzed in real time to assess 
for potential threats. 

4. The system uses its understanding of normal application 
behavior to identify anomalies that may represent attacks. 

5. Appropriate actions are taken automatically, such as session 
termination, input sanitization, or alerts to administrators. 

6. The system learns from past attacks to improve its threat 
detection and response strategies over time. 



RASP Big Pic 



Rasp for all seasons 

Embedded agents 

Server Plugins/Add-ons: 

App Server Non-Web App/Desktop

Local agent

Background services

Mobile Apps Cloud Native

------------------------------------------ ------------------------------------------ ------------------------------------------ --------------------------------------



Rasp for all seasons cont.

Embedded in firmware 

IoT

------------------------------------------

API Gateway 

APIs

------------------------------------------



Rasp pre-deployment 

• Application compatibility [Ensure the RASP solution is compatible with the 
programming languages and frameworks of your applications. Compatibility reduces integration 
issues and functional discrepancies.]

• Performance Benchmarks [Establish performance benchmarks to evaluate the impact 
of RASP on application response times and resource usage. RASP tools should not significantly 
degrade the performance of the application they protect.]

• Operational Integration [Assess the ease of integrating RASP solutions with existing 
CI/CD pipelines, DevOps practices, and application deployment strategies.]



Rasp pre-deployment 

• Approach and components 



RASP techniques 

ACTIVE or PASSIVE

PROTECTION or MONITORING



Active mode

• High application resources usage

• Expected latency and performance impact 

• Real-time detection and prevention



Passive mode

• Limited application resources usage

• Low latency 

• Generating logs

• Learning 



RASP techniques  

• Traffic Analysis => DPI, signature-based detection

• Behavioral Analysis => Historical analysis through application baselines 

• Anomaly Detection/Heuristics => machine learning algorithms and predefined models

• Signature Analysis => Known payloads and attack patterns



RASP techniques cont. 

• Code Analysis!!!? => What about runtime!?,  Bytecode analysis

• Memory Analysis => Inspection of memory allocations and accesses BoF, heap manipulations, 

and… 



RASP in action 

• RASP implementations 



RASP in action 

• RASP integrations  

• Compatibility Assessment 

• Performance Impact Assessment 

• False Positive/Negative monitoring

• Policy Optimization 

• Alerts Handling

• Compliance and Reporting 



Real world examples 

• https://github.com/talsec/Free-RASP-Community

• https://github.com/baidu/openrasp

• https://github.com/paraxialio/exploit_guard

https://github.com/talsec/Free-RASP-Community
https://github.com/baidu/openrasp
https://github.com/paraxialio/exploit_guard


RASP VS IAST

Feature IAST RASP

Functionality Security testing tool Security prevention tool

Detection
Detects security 
vulnerabilities

Detects security threats 
and attacks

Operation
Analyzes application 
during runtime

Integrates within 
applications to monitor 
runtime

Integration
Typically used in 
development/testing 
phase

Integrated within 
production applications

Focus
Focuses on identifying 
potential weaknesses

Focuses on actively 
protecting applications



RASP vs WAF

Feature WAF RASP

Integration
Perimeter security (Maybe 
1st layer)

Last layer of defense 

Operation
Alerting based on patterns 
by HTTP(S) requests 
inspection

Alerts and blocks known and 
potential threats by App 
behavior inspection

Attack Handling
Blocks attacks with existing 
rules

Blocks both known attacks 
and zero-day attacks

Automation
Requires manual rule 
configuration

Operates without human 
intervention 

Security Approach
Reactive; based on known 
payloads

Proactive and 
comprehensive; handles 
unknown threats



RASP vs WAF

•  Log4J is not a good example and I think WAF is a better solution since 
it deployed at the network perimeter. 

• consider a sophisticated attack that uses legitimate application 
functionality in an unintended way to perform unauthorized actions, 
such as manipulating internal API calls or abusing application logic to 
escalate privileges. RASP, by understanding the application's normal 
behavior and context, can detect and block such misuse in real-time, 
even when specific attack signatures are not yet known or are too 
complex for a WAF to discern.



Conclusion 



References


	Slide 1: DefCamp Cluj-Napoca 
	Slide 2: Sponsors… 
	Slide 3: About me
	Slide 4: AppSec 
	Slide 5: The ecosystem 
	Slide 6: Appsec ecosystem 
	Slide 7: Appsec ecosystem 
	Slide 8: Appsec ecosystem 
	Slide 9: Appsec ecosystem 
	Slide 10: Appsec ecosystem 
	Slide 12: Tooling disadvantages 
	Slide 13
	Slide 14: No!
	Slide 15: SAST limitations 
	Slide 16: DAST limitations 
	Slide 17: IAST limitations 
	Slide 18: RASP 
	Slide 19: RASP benefits 
	Slide 20: RASP vs SAST/DAST/IAST 
	Slide 21: RASP 
	Slide 22: RASP approach 
	Slide 23: RASP Steps 
	Slide 24: RASP Big Pic 
	Slide 25: Rasp for all seasons 
	Slide 26: Rasp for all seasons cont.
	Slide 27: Rasp pre-deployment 
	Slide 28: Rasp pre-deployment 
	Slide 29: RASP techniques 
	Slide 30: Active mode
	Slide 31: Passive mode
	Slide 32: RASP techniques  
	Slide 33: RASP techniques cont. 
	Slide 34: RASP in action 
	Slide 35: RASP in action 
	Slide 36: Real world examples 
	Slide 37: RASP VS IAST
	Slide 38: RASP vs WAF
	Slide 39: RASP vs WAF
	Slide 40: Conclusion 
	Slide 41: References

