

Global Leader

In Cybersecurity

Code Injection via
Arbitrary Pointer
Overwrite

↳ Security Researcher @ Bitdefender

↳ Passionate about low level systems programming

↳ Interested in injection techniques

↳ Mythic raider at night

Introduction – Eduard Muresan

↳ Process Injection Background

↳ C.I.A.P.O. Methodology

↳ Executable Pointer Examples

↳ Mitigations

↳ Demo

↳ Q&A

Agenda

What is process injection

Process injection

A method used by malware to execute arbitrary
code within the address space of a separate

live process.

Why process injection

Process injection

Execution via process injection might evade
process-based detections from security

products.

Injection building blocks

Allocate

Injection building blocks

Allocate Write

Injection building blocks

Allocate Write Execute

Injection building blocks

Allocate

Write Execute
❑ Usually legitimate

❑ Can be implicit

Injection building blocks

Allocate

Write

Execute❑ Might be legitimate

❑ Can be implicit

Injection building blocks

Allocate Write

Execute

❑ Not so legitimate

❑ Highly monitored

Piecing everything together

Allocate Write Execute

void RemoteThreadInjection(HANDLE Process) {
 // Pretend this is a fancy shellcode.
 static const BYTE shellcode[] = { 0xC3 };

 // Reserve space for the payload.
 void* payload = VirtualAllocEx(Process, NULL, sizeof(shellcode), MEM_RESERVE |

MEM_COMMIT, PAGE_EXECUTE_READWRITE);

 // Write the payload to the allocated space.
 WriteProcessMemory(Process, payload, shellcode, sizeof(shellcode), NULL);

 // Trigger the payload.
 CreateRemoteThread(Process, NULL, 0, payload, NULL, 0, NULL);
}

Piecing everything together

Allocate

Write

Execute

void RemoteThreadInjection(HANDLE Process) {
 // Pretend this is a fancy shellcode.
 static const BYTE shellcode[] = { 0xC3 };

 // Reserve space for the payload.
 void* payload = VirtualAllocEx(Process, NULL, sizeof(shellcode), MEM_RESERVE |

MEM_COMMIT, PAGE_EXECUTE_READWRITE);

 // Write the payload to the allocated space.
 WriteProcessMemory(Process, payload, shellcode, sizeof(shellcode), NULL);

 // Trigger the payload.
 CreateRemoteThread(Process, NULL, 0, payload, NULL, 0, NULL);
}

Piecing everything together

void APCInjection(HANDLE Process, HANDLE Thread) {

 // Pretend this is a fancy shellcode.

 static const BYTE shellcode[] = { 0xC3 };

 // Reserve space for the payload.

 void* payload = VirtualAllocEx(Process, NULL, sizeof(shellcode), MEM_RESERVE | MEM_COMMIT,
PAGE_EXECUTE_READWRITE);

 // Write the payload to the allocated space.

 WriteProcessMemory(Process, payload, shellcode, sizeof(shellcode), NULL);

 // Trigger the payload.

 QueueUserAPC(payload, Thread, NULL);

}

Change the execute primitive

The problem with execute primitives

The problem with execute primitives

❑Highly monitored

❑Can be blocked

❑Might be traced back to the attacker

❑Becomes a cat and mouse game

Remove the execute primitive?

DOS Header

DOS STUB

NT Headers

Section Table

The PE file format

NT Headers

The PE file format

NT Headers

The PE file format

Data Directory

NT Headers

Thread Local Storage Injection

Data Directory

typedef struct _IMAGE_TLS_DIRECTORY64 {

 ULONGLONG StartAddressOfRawData;

 ULONGLONG EndAddressOfRawData;

 ULONGLONG AddressOfIndex; // PDWORD

 ULONGLONG AddressOfCallBacks; // PIMAGE_TLS_CALLBACK *;

 DWORD SizeOfZeroFill;

 union {

 DWORD Characteristics;

 struct {

 DWORD Reserved0 : 20;

 DWORD Alignment : 4;

 DWORD Reserved1 : 8;

 } DUMMYSTRUCTNAME;

 } DUMMYUNIONNAME;

} IMAGE_TLS_DIRECTORY64;

NT Headers

The PE file format

NT Headers

The PE file format

AddressOfEntryPoint

NT Headers

Entry Point Injection

AddressOfEntryPoint

typedef struct _PEB_LDR_DATA {
 BYTE Reserved1[8];
 PVOID Reserved2[3];
 LIST_ENTRY InMemoryOrderModuleList;
} PEB_LDR_DATA, * PPEB_LDR_DATA;

typedef struct _LDR_DATA_TABLE_ENTRY {
 PVOID Reserved1[2];
 LIST_ENTRY InMemoryOrderLinks;
 PVOID Reserved2[2];
 PVOID DllBase;
 PVOID EntryPoint;
 PVOID Reserved3;
 UNICODE_STRING FullDllName;
 [snip]
} LDR_DATA_TABLE_ENTRY, * PLDR_DATA_TABLE_ENTRY;

Process Mockingjay

RWX

Process Mockingjay

RWX

Process Mockingjay

RWX

msys-2.0.dll ssh.exe

Process Mockingjay

msys-2.0.dll ssh.exe

Process Mockingjay

The problem with specific pointers

The problem with specific pointers

❑Highly monitored

❑Execution can be blocked

❑Becomes a cat and mouse game

C.I.A.P.O. Methodology

C.I.A.P.O. Methodology

Heap

Stack

Code & Data

C.I.A.P.O. Methodology

Heap

Stack

Code & Data

C.I.A.P.O. Methodology

Heap Code & Data

C.I.A.P.O. Methodology

Heap Code & Data

Function Pointer

Function Pointer

Function Pointer

Function Pointer

Function Pointer

C.I.A.P.O. Methodology

Heap Code & Data

Payload Pointer

Function Pointer

Function Pointer

Function Pointer

Function Pointer

C.I.A.P.O. Methodology

Heap Code & Data

Payload Pointer

Payload Pointer

Payload Pointer

Payload Pointer

Payload Pointer

All your pointer are belong to us

static void (*pSleep)(DWORD);

int main() {
 pSleep = GetProcAddress(
 GetModuleHandleA("kernel32.dll"),
 "Sleep"
);

 while (TRUE) {
 pSleep(1000);
 }

 return 0;
}

Example

static void (*pSleep)(DWORD);

int main() {
 pSleep = GetProcAddress(
 GetModuleHandleA("kernel32.dll"),
 "Sleep"
);

 while (TRUE) {
 pSleep(1000);
 }

 return 0;
}

Example

❑ Dynamically determine the

target address at runtime

❑ Generated by the compiler in

most programs

❑ Almost guaranteed to be

executed at some point

Indirect Branches

Example

Example

Finding executable pointers

Heap

Stack

Code & Data

Finding executable pointers

Code & Data

Finding executable pointers

Code & Data

Read Only Data

Read Write Data

Code

Finding executable pointers

Code & Data

Read Only Data

Read Write Data

Code

Read Only Data:

❑Import Address Table

❑Virtual Function Tables

❑Overwriting might be suspicious

Finding executable pointers

Code & Data

Read Only Data

Read Write Data

Code

Read Write Data:

❑Arbitrary function pointers

Finding executable pointers

Code & Data

Read Only Data

Read Write Data

Code

Finding executable pointers

Heap

Finding executable pointers

Heap

Dynamic Array

Structure 1

Structure 2

Finding executable pointers

Heap

Dynamic Array

Structure 1

Structure 2

The heap:

❑Arbitrary function pointers

❑Usually contained in various structures

Finding executable pointers

Heap

Dynamic Array

Structure 1

Structure 2

❑TppAlpcpExecuteCallback

❑TppTimerQueueExpiration

❑LdrpWorkCallback

Thread Pool Objects:

❑All processes have a thread pool

❑Represented as structures

❑Multiple work item types

❑Timers, Workers and async Workers (Wait,

IO, Alpc)

Finding executable pointers

Heap

Dynamic Array

Structure 1

Structure 2

Kernel32!SortCompareString

❑National Language Support

❑Local specific string compare

❑Loaded based on registry key

Mitigations: CET-IBT

JMP RAX

Mitigations: CET-IBT

JMP RAX 01001010011 #CP

Mitigations: CET-IBT

JMP RAX ENDBR 01001010011

Mitigations: CFG

while (TRUE) {
 pSleep(1000);
 }

Mitigations: CFG

while (TRUE) {
 pSleep(1000);
 }

Mitigations: CFG

while (TRUE) {
 pSleep(1000);
 }

Demo

Takeaways

❑ Detecting injection attacks by only monitoring execute primitives is necessary

but not sufficient.

❑ Process Injection allow attackers to evade security solutions, increasing the

Mean Time to Detection.

❑ Having a comprehensive approach to detecting and preventing injections is

mandatory to ensure individuals and organizations remain unharmed via

Defense in Depth.

❑ C.I.A.P.O. pushes forward the state of the art, demonstrating that attackers

might use brute force approaches to overwrite random functions.

Q&A

Thank you!

Trusted.

Always.

	Slide 1
	Slide 2
	Slide 3: Code Injection via Arbitrary Pointer Overwrite
	Slide 4: Introduction – Eduard Muresan
	Slide 5: Agenda
	Slide 6: What is process injection
	Slide 7: Process injection
	Slide 8: Why process injection
	Slide 9: Process injection
	Slide 10: Injection building blocks
	Slide 11: Injection building blocks
	Slide 12: Injection building blocks
	Slide 13: Injection building blocks
	Slide 14: Injection building blocks
	Slide 15: Injection building blocks
	Slide 16: Piecing everything together
	Slide 17: Piecing everything together
	Slide 18: Piecing everything together
	Slide 19: Change the execute primitive
	Slide 20: The problem with execute primitives
	Slide 21: The problem with execute primitives
	Slide 22: Remove the execute primitive?
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: The problem with specific pointers
	Slide 36: The problem with specific pointers
	Slide 37: C.I.A.P.O. Methodology
	Slide 38: C.I.A.P.O. Methodology
	Slide 39: C.I.A.P.O. Methodology
	Slide 40: C.I.A.P.O. Methodology
	Slide 41: C.I.A.P.O. Methodology
	Slide 42: C.I.A.P.O. Methodology
	Slide 43: C.I.A.P.O. Methodology
	Slide 44: All your pointer are belong to us
	Slide 45: Example
	Slide 46: Example
	Slide 47: Indirect Branches
	Slide 48: Example
	Slide 49: Example
	Slide 50: Finding executable pointers
	Slide 51: Finding executable pointers
	Slide 52: Finding executable pointers
	Slide 53: Finding executable pointers
	Slide 54: Finding executable pointers
	Slide 55: Finding executable pointers
	Slide 56: Finding executable pointers
	Slide 57: Finding executable pointers
	Slide 58: Finding executable pointers
	Slide 59: Finding executable pointers
	Slide 60: Finding executable pointers
	Slide 61: Mitigations: CET-IBT
	Slide 62: Mitigations: CET-IBT
	Slide 63: Mitigations: CET-IBT
	Slide 64: Mitigations: CFG
	Slide 65: Mitigations: CFG
	Slide 66: Mitigations: CFG
	Slide 67: Demo
	Slide 68: Takeaways
	Slide 69: Q&A
	Slide 70: Thank you!
	Slide 71

