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What is process injection



Process injection

A method used by malware to execute arbitrary 
code within the address space of a separate 

live process.



Why process injection



Process injection

Execution via process injection might evade 
process-based detections from security 

products.



Injection building blocks

Allocate



Injection building blocks

Allocate Write



Injection building blocks

Allocate Write Execute



Injection building blocks

Allocate

Write Execute
❑ Usually legitimate

❑ Can be implicit



Injection building blocks

Allocate

Write

Execute❑ Might be legitimate

❑ Can be implicit



Injection building blocks

Allocate Write

Execute

❑ Not so legitimate

❑ Highly monitored



Piecing everything together

Allocate Write Execute



void RemoteThreadInjection(HANDLE Process) {
    // Pretend this is a fancy shellcode.
    static const BYTE shellcode[] = { 0xC3 };

    // Reserve space for the payload.
    void* payload = VirtualAllocEx(Process, NULL, sizeof(shellcode), MEM_RESERVE | 

MEM_COMMIT, PAGE_EXECUTE_READWRITE);

    // Write the payload to the allocated space.
    WriteProcessMemory(Process, payload, shellcode, sizeof(shellcode), NULL);

    // Trigger the payload.
    CreateRemoteThread(Process, NULL, 0, payload, NULL, 0, NULL);
}

Piecing everything together

Allocate

Write

Execute



void RemoteThreadInjection(HANDLE Process) {
    // Pretend this is a fancy shellcode.
    static const BYTE shellcode[] = { 0xC3 };

    // Reserve space for the payload.
    void* payload = VirtualAllocEx(Process, NULL, sizeof(shellcode), MEM_RESERVE | 

MEM_COMMIT, PAGE_EXECUTE_READWRITE);

    // Write the payload to the allocated space.
    WriteProcessMemory(Process, payload, shellcode, sizeof(shellcode), NULL);

    // Trigger the payload.
    CreateRemoteThread(Process, NULL, 0, payload, NULL, 0, NULL);
}

Piecing everything together



void APCInjection(HANDLE Process, HANDLE Thread) {

    // Pretend this is a fancy shellcode.

    static const BYTE shellcode[] = { 0xC3 };

    // Reserve space for the payload.

    void* payload = VirtualAllocEx(Process, NULL, sizeof(shellcode), MEM_RESERVE | MEM_COMMIT, 
PAGE_EXECUTE_READWRITE);

    // Write the payload to the allocated space.

    WriteProcessMemory(Process, payload, shellcode, sizeof(shellcode), NULL);

    // Trigger the payload.

    QueueUserAPC(payload, Thread, NULL);

}

Change the execute primitive



The problem with execute primitives



The problem with execute primitives

❑Highly monitored

❑Can be blocked

❑Might be traced back to the attacker

❑Becomes a cat and mouse game



Remove the execute primitive?



DOS Header

DOS STUB

NT Headers

Section Table

The PE file format



NT Headers

The PE file format



NT Headers

The PE file format

Data Directory



NT Headers

Thread Local Storage Injection

Data Directory

typedef struct _IMAGE_TLS_DIRECTORY64 {

    ULONGLONG StartAddressOfRawData;

    ULONGLONG EndAddressOfRawData;

    ULONGLONG AddressOfIndex;         // PDWORD

    ULONGLONG AddressOfCallBacks;     // PIMAGE_TLS_CALLBACK *;

    DWORD SizeOfZeroFill;

    union {

        DWORD Characteristics;

        struct {

            DWORD Reserved0 : 20;

            DWORD Alignment : 4;

            DWORD Reserved1 : 8;

        } DUMMYSTRUCTNAME;

    } DUMMYUNIONNAME;

} IMAGE_TLS_DIRECTORY64;



NT Headers

The PE file format



NT Headers

The PE file format

AddressOfEntryPoint



NT Headers

Entry Point Injection

AddressOfEntryPoint

typedef struct _PEB_LDR_DATA {
    BYTE       Reserved1[8];
    PVOID      Reserved2[3];
    LIST_ENTRY InMemoryOrderModuleList;
} PEB_LDR_DATA, * PPEB_LDR_DATA;

typedef struct _LDR_DATA_TABLE_ENTRY {
    PVOID Reserved1[2];
    LIST_ENTRY InMemoryOrderLinks;
    PVOID Reserved2[2];
    PVOID DllBase;
    PVOID EntryPoint;
    PVOID Reserved3;
    UNICODE_STRING FullDllName;
    [snip]
} LDR_DATA_TABLE_ENTRY, * PLDR_DATA_TABLE_ENTRY;



Process Mockingjay



RWX

Process Mockingjay



RWX

Process Mockingjay



RWX

msys-2.0.dll ssh.exe

Process Mockingjay



msys-2.0.dll ssh.exe

Process Mockingjay



The problem with specific pointers



The problem with specific pointers

❑Highly monitored

❑Execution can be blocked

❑Becomes a cat and mouse game



C.I.A.P.O. Methodology



C.I.A.P.O. Methodology

Heap

Stack

Code & Data



C.I.A.P.O. Methodology

Heap

Stack

Code & Data



C.I.A.P.O. Methodology

Heap Code & Data



C.I.A.P.O. Methodology

Heap Code & Data

Function Pointer

Function Pointer

Function Pointer

Function Pointer

Function Pointer



C.I.A.P.O. Methodology

Heap Code & Data

Payload Pointer

Function Pointer

Function Pointer

Function Pointer

Function Pointer



C.I.A.P.O. Methodology

Heap Code & Data

Payload Pointer

Payload Pointer

Payload Pointer

Payload Pointer

Payload Pointer



All your pointer are belong to us



static void (*pSleep)(DWORD);

int main() {
    pSleep = GetProcAddress(
        GetModuleHandleA("kernel32.dll"),
        "Sleep"
    );

    while (TRUE) {
        pSleep(1000);
    }

    return 0;
}

Example



static void (*pSleep)(DWORD);

int main() {
    pSleep = GetProcAddress(
        GetModuleHandleA("kernel32.dll"),
        "Sleep"
    );

    while (TRUE) {
        pSleep(1000);
    }

    return 0;
}

Example



❑ Dynamically determine the 

target address at runtime

❑ Generated by the compiler in 

most programs

❑ Almost guaranteed to be 

executed at some point

Indirect Branches



Example



Example



Finding executable pointers

Heap

Stack

Code & Data



Finding executable pointers

Code & Data



Finding executable pointers

Code & Data

Read Only Data

Read Write Data

Code



Finding executable pointers

Code & Data

Read Only Data

Read Write Data

Code

Read Only Data:

❑Import Address Table

❑Virtual Function Tables

❑Overwriting might be suspicious



Finding executable pointers

Code & Data

Read Only Data

Read Write Data

Code

Read Write Data:

❑Arbitrary function pointers



Finding executable pointers

Code & Data

Read Only Data

Read Write Data

Code



Finding executable pointers

Heap



Finding executable pointers

Heap

Dynamic Array

Structure 1

Structure 2



Finding executable pointers

Heap

Dynamic Array

Structure 1

Structure 2

The heap:

❑Arbitrary function pointers

❑Usually contained in various structures



Finding executable pointers

Heap

Dynamic Array

Structure 1

Structure 2

❑TppAlpcpExecuteCallback

❑TppTimerQueueExpiration

❑LdrpWorkCallback

Thread Pool Objects:

❑All processes have a thread pool

❑Represented as structures

❑Multiple work item types

❑Timers, Workers and async Workers (Wait, 

IO, Alpc)



Finding executable pointers

Heap

Dynamic Array

Structure 1

Structure 2

Kernel32!SortCompareString

❑National Language Support

❑Local specific string compare

❑Loaded based on registry key



Mitigations: CET-IBT

JMP RAX



Mitigations: CET-IBT

JMP RAX 01001010011 #CP



Mitigations: CET-IBT

JMP RAX ENDBR 01001010011



Mitigations: CFG

while (TRUE) {
        pSleep(1000);
    }



Mitigations: CFG

while (TRUE) {
        pSleep(1000);
    }



Mitigations: CFG

while (TRUE) {
        pSleep(1000);
    }



Demo



Takeaways

❑ Detecting injection attacks by only monitoring execute primitives is necessary 

but not sufficient.

❑ Process Injection allow attackers to evade security solutions, increasing the 

Mean Time to Detection.

❑ Having a comprehensive approach to detecting and preventing injections is 

mandatory to ensure individuals and organizations remain unharmed via 

Defense in Depth.

❑ C.I.A.P.O. pushes forward the state of the art, demonstrating that attackers 

might use brute force approaches to overwrite random functions.



Q&A



Thank you!



Trusted. 

Always.
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