
Saving the (post-quantum) 
world with neural networks

Mihail-Iulian Pleșa



2

Who am I?

▪ Passionate about research and 
dissemination

  

▪ Interests: security aspects and 
applications of A.I.

▪ Security Researcher at Orange 
Services
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What You Will Know (about post-quantum crypto)

1. What it is?

2. Why do we need it? 

3. What do neural networks have to do with it?
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DH algorithm

D H
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RSA algorithm

R S A
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Shor’s algorithm
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RSA-2048?

 We just need 20M qubits
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IBM Q
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What to do?

Quantum key agreement

◼ Based on quantum effects 

◼ Specific hardware 

◼ High costs 

◼ Guarantee to work

Post-quantum cryptography

◼ Based on hard math problems

◼ Usual hardware 

◼ Low costs 

◼ Many believe it will work 
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Finaists
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▪Encryption:

▪  CRYSTALS-Kyber (lattice)

▪Signatures:

▪  CRYSTALS-Dilithium (lattice)

▪  FALCON (lattice)

▪  SPHINCS+ (hash)

NIST 
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TPM
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▪ 𝐾 groups of 𝑁 input neurons

▪ Each group is connected to a single hidden neuron

▪ All hidden neurons are connected to the output neuron

▪ The weights are integers from 0 to 𝐿

TPM
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▪𝑋𝑖   - the values of the input neurons 
         from the 𝑖𝑡ℎ group

▪𝑦𝑖    - the value of 𝑖𝑡ℎ hidden neuron

▪𝑂     - the value of the output neuron

▪𝜎(𝑥) - the sign of 𝑥

Notations 
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TPM

Compute the hidden neurons

◼ Multiply the inputs with the weights 

for each group

◼ 𝑦𝑖 = 𝑤𝑖 ⋅ 𝑥𝑖

Compute the output

◼ Get the sign of each hidden neuron 

and multiply them 

◼ 𝑂 = ς𝑖=1
𝐾 𝜎(𝑦𝑖)
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Protocol
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Intuition

 Let’s take a (random) walk 
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Differences with current SOTA

Previous approaches

◼ Non-cryptographic security definition 

i.e. secure means the attacker 

cannot recover 90% of the key 

◼ Inputs are binary 

◼ Weights can be negative

◼ Ignore the 0 sign

◼ Include the extrema values (𝐿) in the 

key

Our approch

◼ More cryptographic security definition 

i.e. secure means the attacker 

cannot recover a non-negligible 

percentage of the key

◼ Inputs are integers

◼ Weights are positive 

◼ Take the 0 sign into consideration

◼ Exclude the extrema values (𝐿) from 

the key 
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Running time w.r.t. 𝑁

𝑇 𝑁 = 27𝑁 + 191
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Running time w.r.t. 𝐾
𝑇 𝐾 = 0.8𝐾2 − 30𝐾 + 1184
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▪Naive attack

▪Geometric attack

▪Majority attack
 

▪Genetic attack 

Attacks 
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▪ Attacker intercepts the inputs and the outputs

▪ It updates its weights if it is synchronized with both Alice and Bob

Naive attack 
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Nave attack w.r.t. 𝐾
𝑇 𝐾 = 0.8𝐾2 − 30𝐾 + 1184

𝜌𝐸,𝐴(𝐾) = 1.27𝑒−0.11𝐾
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Nave attack w.r.t. 𝑁
𝑇 𝐾 = 0.8𝐾2 − 30𝐾 + 1184
𝜌𝐸,𝐴(𝑁) = 0.02𝑒−0.03𝑁
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▪ Attacker intercepts the inputs and the outputs

▪ If the attacker is not synchronized with both Alice and Bob, it corrects the 
corresponding hidden neurons and then updates the weights

▪ Idea: reverse the sign of the hidden neuron whose input is closest to the 
weights

Geometric attack 
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▪ The attacker instantiates 𝑀 parallel geometric attacks

▪ It updates all the hidden neurons with the most frequent configuration

 

Majority attack 
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Nave attack w.r.t. 𝐾
𝑇 𝐾 = 0.8𝐾2 − 30𝐾 + 1184

𝜌𝐸,𝐴(𝐾) = 1.27𝑒−0.11𝐾𝜌𝐸,𝐴(𝐾) = 0.91𝑒−0.004𝐾

𝜌𝐸,𝐴(𝐾) = 1.13𝑒−0.06𝐾
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▪ Similar to majority attack

▪ Use a genetic algorithm to update the weights

▪ Exponential in 𝐾

Genetic attack 
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Demo
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▪What about authentication?

▪ It may be a solution

▪Not based on a “hard” math problems

▪Simple to implement 

▪Need to be formalized

Summary



Thank you
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